top of page

Publications

Developmental neurobiology

The developing optic tectum: an asymmetrically organized system and the need for a redefinition of the notion of sensitive period

Rapacioli M, Fiszer de Plazas S, Flores V.

Int J Dev Neurosci. 2019 Apr;73:1-9. doi: 10.1016/j.ijdevneu.2018.12.003.

​

NGF, TrkA-P and neuroprotection after a hypoxic event in the developing central nervous system.

Bogetti ME, Pozo Devoto VM, Rapacioli M, Flores V and Fiszer de Plazas S.

Int J Dev Neurosci. 2018 Aug 27;71:111-121. doi: 10.1016/j.ijdevneu.2018.08.007.

​

Early bilateral and massive compromise of the frontal lobes.

Agustín Ibáñez, Máximo Zimerman, Lucas Sedeño, Nicolas Lori, Melina Rapacioli, Juan F. Cardona, Diana M.A. Suarez, Eduar Herrera, Adolfo M. García, Facundo Manes.

Neuroimage Clin. 2018 Feb 27;18:543-552. doi: 10.1016/j.nicl.2018.02.026. eCollection 2018.

 

​Corrigendum: Morphogenetic and Histogenetic Roles of the Temporal-Spatial Organization of Cell Proliferation in the Vertebrate Corticogenesis as Revealed by Inter-specific Analyses of the Optic Tectum Cortex

​

Morphogenetic and Histogenetic Roles of the Temporal-Spatial Organization of Cell Proliferation in the Vertebrate Corticogenesis as Revealed by Inter-specific Analyses of the Optic Tectum Cortex Development.

Rapacioli M, Palma V, Flores V.

Front Cell Neurosci. 2016 Mar 17;10:67. doi: 10.3389/fncel.2016.00067. Review. Erratum in: Front Cell Neurosci. 2016;10:112. PubMed PMID: 27013978; PubMed Central PMCID: PMC4794495.

 

Temporal-spatial correlation between angiogenesis and corticogenesis in the developing chick optic tectum.

Rodriguez Celin A, Rapacioli M, Gonzalez MA, Ballarin VL, Fiszer de Plazas S, López-Costa JJ, Flores V.

PLoS One. 2015 Jan 29;10(1):e0116343. doi: 10.1371/journal.pone.0116343. Erratum in: PLoS One. 2015;10(3):e0122549. PubMed PMID: 25633659; PubMed Central PMCID: PMC4310613.

​

uPA-uPAR molecular complex is involved in cell signaling during neuronal migration and neuritogenesis.

Lino N, Fiore L, Rapacioli M, Teruel L, Flores V, Scicolone G, Sánchez V.

Dev Dyn. 2014 May;243(5):676-89. doi: 10.1002/dvdy.24114. PubMed PMID: 24481918.

​

Sonic hedgehog (Shh)/Gli modulates the spatial organization of neuroepithelial cell proliferation in the developing chick optic tectum.

Rapacioli M, Botelho J, Cerda G, Duarte S, Elliot M, Palma V, Flores V.

BMC Neurosci. 2012 Oct 2;13:117. doi: 10.1186/1471-2202-13-117. PubMed PMID: 23031710; PubMed Central PMCID: PMC3564940.

​

Optic tectum morphogenesis: a step-by-step model based on the temporal-spatial organization of the cell proliferation. Significance of deterministic and stochastic components subsumed in the spatial organization.

Rapacioli M, Duarte S, Rodríguez Celín A, Fiore L, Teruel L, Scicolone G, Sánchez V, Flores V.

Dev Dyn. 2012 Jun;241(6):1043-61. doi: 10.1002/dvdy.23785. PubMed PMID: 22473829.

 

EphA3 expressed in the chicken tectum stimulates nasal retinal ganglion cell axon growth and is required for retinotectal topographic map formation.

Ortalli AL, Fiore L, Di Napoli J, Rapacioli M, Salierno M, Etchenique R, Flores V, Sanchez V, Carri NG, Scicolone G.

PLoS One. 2012;7(6):e38566. doi: 10.1371/journal.pone.0038566. PubMed PMID: 22685584; PubMed Central PMCID: PMC3369860.

​​

The chick optic tectum developmental stages. A dynamic table based on temporal- and spatial-dependent histogenetic changes: A structural, morphometric and immunocytochemical analysis.

Rapacioli M, Rodríguez Celín A, Duarte S, Ortalli AL, Di Napoli J, Teruel L, Sánchez V, Scicolone G, Flores V.

J Morphol. 2011 Jun;272(6):675-97. doi: 10.1002/jmor.10943. 

​

​Acute hypoxia differentially affects the NMDA receptor NR1, NR2A and NR2B subunit mRNA levels in the developing chick optic tectum: stage-dependent plasticity in the 2B-2A ratio.

Vacotto M, Rapacioli M, Flores V, Fiszer de Plazas S.

Neurochem Res. 35(10):1609-19, 2010.

 

Acute hypoxia differentially affects the gamma-aminobutyric acid type A receptor alpha(1), alpha(2), beta(2), and gamma(2) subunit mRNA levels in the developing chick optic tectum: Stage-dependent sensitivity.

Fiszer de Plazas S, Rapacioli M, Gil DJ, Vacotto M, Flores V.

J Neurosci Res. 85(14):3135-3144, 2007.

 

Developmental pattern of NADPH-diaphorase positive neurons in chick optic tectum is sensitive to changes in visual stimulation.

Scicolone G, Ortalli AL, Alvarez G, Lopez-Costa JJ, Rapacioli M, Ferran JL, Sanchez V, Flores V.

J Comp Neurol. 494(6):1007-1030, 2006.

 

Development and localisation of GABA(A) receptor alpha(1), alpha(2), beta(2) and gamma(2) subunit mRNA in the chick optic tectum.

Rodriguez Gil DJ, Vacotto M, Rapacioli M, Scicolone G, Flores V and Fiszer de Plazas S.

J Neurosci Res. 81(4):469-480, 2005.

 

Developmental changes in the spatial pattern of Mesencephalic Trigeminal Nucleus (Mes5) neuron populations in the developing chick optic tectum.

Sanchez C, Ferrán JL, Pereyra Alfonso S, Scicolone G, Rapacioli M, Flores V.

The Journal of Comparative Neurology 448:337-348, 2002.

 

Developmental pattern of plasminogen activator activity in the chick brain hemisphere.

Scicolone G, Pereyra-Alfonso S, Ferrán JL, Flores V.

Neurochemical Res. 23: 1185-1190, 1998.

 

Temporal pattern of plasminogen activator activity in the developing chick cerebellum.

Scicolone G, Pereyra-Alfonso S, Sanchez V, Flores V.

Int. J. Dev. Neurosci., 15: 875-882, 1997.

 

Developmental pattern of plasminogen activator activity in the chick optic lobe.

Pereyra-Alfonso S, Scicolone G, Ferrán JL, Pecci Saavedra J, Flores V.

Int. J. Dev. Neurosci., 15:805-812, 1997.

 

Development of the laminated pattern of the chick embryo tectum opticum.

Scicolone G, Pereyra-Alfonso S, Brusco A, Pecci Saavedra J, Flores V.

Int. J. Dev. Neurosci., 13:845-858, 1995.

 

Development of the serotoninergic innervation in the chick embryo optic tectum. An immunocytochemical study.

Brusco A, Pecci Saavedra J, Scicolone G, Flores V.

Int. J. Dev. Neurosci., 13:835-843, 1995.

​

Current Triton X-100 treatments do not allow a complete plasminogen activator extraction from developing nervous tissue.

Pereyra-Alfonso S, Scicolone G, Fiszer de Plazas S, Saavedra JP, Flores V.

Neurochemical research. 1995; 20(2):137-42.

 

Methods for removing endogenous factors from CNS membrane preparations: differences in [3H]GABA binding parameters and developmental-related effects.

 

Fiszer de Plazas S, Gravielle MC, Mitridate de Novara A, Flores V.

Neurochemical research. 1993; 18(4):385-91.

​

Serotoninergic reinnervation of regenerating tentacular sensory organs in a pulmonate snail, Cryptomphalus aspersa.

Flores V, Brusco A, Scicolone G, Saavedra JP.

International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 1992; 10(4):331-40.

 

The postnatal development of benzodiazepine receptor sites in the chick optic lobe is modulated by environmental lighting.

 

Gravielle MC, Flores V, Fiszer de Plazas S.

Neurochemistry international. 1992; 20(2):257-62.

 

Effect of a simple visual pattern on the early postnatal development of GABA receptor sites in the chick optic lobe.

 

Fiszer de Plazas S, Conterjnic D, Flores V.

International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 1991; 9(3):195-201.

​

Evidence for a transcellular cisternal route across the caecal epithelium of an insect.

Flores V, Lane NJ.

Cell and tissue research. 1990; 261(2):347-54.

 

Immunocytochemical study of the postnatal development of 5-HT-containing neurons and fibers in the cerebroid ganglia of Cryptomphalus aspersa.

 

Flores V, Brusco A, Saavedra JP.

International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 1988; 6(4):359-66.

Software, simulation and modeling

Bases for modeling directed cell migration as a self-organized process emergent from local stochastic interactions. Deterministics and stochastics components compose the dynamics of the directed cell migration.

Hesse Rizzi E, Rapacioli M, Flores V

VI International Meeting of the Latin American Society for Developmental Biology. 2012

 

Designing a Computer Software Program for Complex Border Detection. Biological Application.

Firka D, Rapacioli M, Fuentes F, Ortalli A, Sanchez V, Scicolone G, D’atellis C, Flores V. 

WSEAS Transactions on Biology and Biomedicine 1(1):24-30, 2004.

 

Digital processing of in situ hybridization images: Identification and spatial allocation of specific labels.

Gonzalez MA, Rapacioli M, Ballarin VL, Fiszer de Plazas S, Flores V.

Journal of Computer Science & Technology 7(3):243-248, 2007

 

Towards a mathematical model to describe the spatial organization of the neuroepithelial cell proliferation in the developing central nervous system.

Clairambault J, Flores V, Perthame B, Rapacioli M, Rofman E, Verdes R

Institut National de Recherche en Informatique et en Automatique (INRIA) Research Report (inria-00476695). 2010.

 

Basics elements for modeling the dynamics of cell migration in cell culture

Farías R, Vidal C, Rapacioli M and Flores V.

J. Phys.: Conf. Ser. 90 012050 (7pp)   2007 doi:10.1088/1742-6596/90/1/012050

 

The Genetic Code Degeneration I: Rules Governing the Code Degeneration and the Spatial Organization of the Codon Informative Properties.

Rapacioli M, Rofman E, Flores V.

Institut National de Recherche en Informatique et en Automatique (INRIA) Research Report Year: 2006 RR-5938.

Digital Image Processing

Development of software for digital image processing for analysis of neuroangiogenesis.

Gonzalez MA, Ballarin VL, Rodríguez Celín A, Rapacioli M, López-Costa JJ and Flores V.

Journal of Physics: Conference Series, Volume 332, Issue 1, 012031 (2011). 

 

Mathematical morphology: detection and characterization of directed axonal growth in vitro.

Gonzalez MA, Ballarin VL, Rapacioli M, Rodríguez Celín A, Sánchez V and Flores V.

Journal of Physics: Conference Series, Volume 332, Issue 1, 012032 (2011).

 

Growing axons analysis by using Granulometric Size distribution.

González MA, Ballarín VL, Rapacioli M, Rodríguez Celín A, Sánchez V and Flores V.

Journal of Physics: Conference Series, Volume 313, Issue 1, pp. 012006 (2011).

 

Biological Signal Processing

Characterizing cell proliferation process in the developing central nervous system.

Mazzeo J, Rapacioli M, Sanchez V, Scicolone G, D’Attellis C, Flores V

InterJournal Complex Systems, Manuscript Number: 1686, 2006.

 

Space sequences reveal an organized neuroepithelial cell proliferation in the developing central nervous system.

Mazzeo J, Rapacioli M, Fuentes F, Di Guilmi M, Ortalli A, D’Attellis C, Flores V.

WSEAS Transactions on Biology and Biomedicine 1(4):441-448, 2004.

 

Analyzing blood cell concentration as stochastic process: Globally characterizing the dynamics of hemogram variability to eventually predict evolution of hemogram series.

Pérez A, D´Attellis C, Rapacioli M, Flores V.

IEEE Engineering in Medicine and Biology 20(6): 170-175, 2001.

 

Definition of developmental locus property in terms of space-dependent changes in dynamics of developmental mechanisms: the postmitotic neuronal migration in the developmental central nervous system.

Rapacioli M, Gigola S, D´Attellis C,  Ferrán JL, Pereyra Alfonso S, Sanchez V, Scicolone G, Flores V.

Mathematics and simulation Biol. Appl., pp 196-201, 2001.

 

Attempts to mathematically define a developmental gradient. The isthmic organizer and the postmitotic neuronal migration dynamics in the developing central nervous system.

Rapacioli M, D´Attellis C, DiMiro A, Spraggon T, Ferrán JL, Pereyra Alfonso S, Sanchez V, Scicolone G, Flores V.

Mathematics and simulation Biol. Appl., pp 137-142, 2001.

 

Analysis of cell proliferation as stochastic point process.

Rapacioli M, Gigola S, D’Attellis C, Ferrán JL, Pereyra-Alfonso S, Sánchez V, Flores V.

Mathematics and Computers in Sci., pp 153-157, 2000.

bottom of page